Bharati Vidyapeeth's College Of Engineering For Women,

Pune-411043

Electronics and Telecommunication Department

Sub:-DSP

Marks:-30

*Class:- T.E*₁(*E*&*TC*.)

N.B.- Solve any two questions

Assume the necessary data

Q-1 a) Compute the Z transform of following sequences and draw the ROC8M I) x (n) = 3^{n} u(n-2) II) x (n)= $(1/3)^{n}$ u(-n)	
b) Compute the Inverse Z transform of following sequences8M	
I) x (z) = Z^2 II) <u>Z</u>	
I) x (z) = Z^2 II) Z (Z-1)(Z-0.5) (Z-1) ³	
Q-2 a) Compute the Discrete Fourier Transform of following sequences8M	
I) $x(n) = \{ 1,2,0,-1 \}$ II) $x(n) = \{1,2,1,2\}$	
b) Compute the Discrete Fourier Transform of following sequences I) $x(k) = \{6,-2+2j,-2,-2-2j\}$ II) $x(k) = \{0,2,0,2\}$	
Q-3 a) State & Prove the properties of Z Transform (Any Four)6M	
b) State & Prove the properties of DFT (Any Four)6M	
c) Compute the DFT of following sequences by using Circular Convolution6M $x1(n)=\{1,2,3,4\}$ $x2(n)=\{4,3,2,1\}$	
d) Find the DTFT of the following sequence of length L6M	
Q-4 a) Compute the DFT by using DITFFT algorithm6M	
$X(n) = \{1, 2, 4, 3\}$	

Bharati Vidyapeeth's College Of Engineering For Women,

Pune-411043

Electronics and Telecommunication Department

Sub:- DSP Class:- $T.E_1(E\&TC.)$ Marks:-50

N.B.- Solve any two questions from Q-2,Q-3,Q-4,Q-5

Q-1 is compulsory

Assume the necessary data

Q-1 a) State the advantages of DSP over ASP6M
b)Determine the solution of difference equation6M $y(n)=(5/6) y(n-1)-(1/6)y(n-2) + x(n)$ for $x(n)=2^n u(n)$ C) Compute the DTFS of following sequences I) $x(n) = cos(pi/3)n$
Q-2 a) Determine whether the following systems are Time variant/ Invariant, Stable/Unstable, Causal/Anticausal ,Linear/Nonlinear8M I) x(n) = nx(n) II) x(n) = y(n)=x(n)+nx(n+1)
 b) Determine and sketch the magnitude and phase response of the following systems8M 1)y(n)=1/3[x(n)+x(n-1)+x(n-2)] 2) y(n)=1/2[x(n)-x(n-1)] Q-3 a)Draw the Direct form I & II structure for the following equation10M y(n)-3/4y(n-1)+1/8 y(n-2)=x(n)+1/2x(n-1)
b)State and prove the relationship of S plane to Z plane for impulse invariance method6M
Q-4 a) Explain in brief Frequency warping of Bilnear Transformation6M
 b) Find the Transfer function of H(s)= 1/(s+1) at its banwidth known to be 1 rad/sec. Use BZT to design a filterwhose Bb.w. IS 20 hz at 60 sps10M
Q-5 a) Design a FIR Filter by using fourier series method Draw the magnitude response also12M
Hd(f)= 1 0<=F<=1000HZ =0 Elsewhere Impulse sequence duration is limited to 2.5 msec. b) Compare the FIR filter with IIR filter4M

ALL THE BEST

Bharati Vidyapeeth's College of Engineering for Women, Pune.

Electronics and TeleCommunication Department

Unit Test I T.E. Academic Year: 2009-2010

Subject: DSP

Duration: 1 hour

Marks: 30

A.)1st question is compulsory.

B.)From 2 to 5 solve any 3 questions.

- 1. Discuss about causality and stability of DT system. [6]
- **2.** Determine zero input response for 2nd order difference equation.

y(n)=3y(n-1)-4y(n-2)=0 [8]

3. Find out particular solution for following difference equation. Assume

x(n)=u(n).

- y(n)+3y(n-1)=x(n). [8]
- 4. Obtain inverse transform using partial fraction expansion method.
 - $X(z) = \frac{1 1/2z^{-1}}{1 1/4z^{-1}}$ [8]
- 5. A DT system has transfer function H (z) = $1+2z^{-1}$

1+0.5z⁻¹

Give all possible ROC of H (z). State in each case whether system is stable. [8]

Bharati Vidyapeeth's College of Engineering for Women, Pune.

Electronics and TeleCommunication Department

Unit Test II T.E. Academic Year: 2009-2010

Subject: DSP

Duration: 1 hour

Marks: 30

a.)1st question is compulsory.

b.)from 2 to 4 solve any 2.

1a. Given 2 sequences of length 4 are $x(n)=\{0,1,2,3\}$. $h(n)=\{2,1,1,2\}$.

Find circular convolution using graphical method. [4]

1b. Calculate DFT of sequence x(n)={1,1,0,0} & check validity of your answer by

Calculating its IDFT. [4]

- 1c. Comparison between Impulse Invariance & Bilinear transformation. [4]
- 2a. Find linear convolution using overlap save method.

x(n)={1,2,-1,2,3,-2,-3,-1,1,1,2,-1}

h(n)={1,2,3}

2b. Compute eight point DFT of sequence

x(n)={1/2,1/2,1/2,1/2,0,0,0,0}

3a. The transfer function of analog filter is h(s) = 3 with $T_s = 0.1$ sec

(s+2)(s+3)

Design digital IIR filter using BLT. [8]

3b. A digital filter has frequency specifications as

Passband frequency= $w_p=0.2\pi$

Stopband frequency=w_s=0.3 π

What are corresponding specifications for passband frequency in analog domain?

- I. Impulse invariance technique is used.
- II. Bilinear transformation is used for designing. [8]

4a. design chebyshev analog filter with max. passband attenuation of 2.5db at

 Ω_p =20rad/sec & stopband attenuation of 30db at Ω_s =50rad/sec.

4b.convert analog filter with system function H(s) into digital filter using impulse invariance method.

$$H(s) = 10$$

 $S^{2}+7s+10$ [8]

Bharati Vidyapeeth's College of Engineering for Women, Pune.

Electronics and TeleCommunication Department

Unit Test I T.E. Academic Year: 2009-2010

Subject: DSP

Duration: 1 hour

Marks: 30

1) What is ROC with respect to z-transform? What are its properties? [5]

2)Determine Z transform of following finite duration sequence

i)
$$X(n)=\{1,2,4,5,0,7\}$$

ii) $X(n)=\{1,2,4,5,0,7\}$ [5]

3)Obtain inverse Z transform of the following using Partial fraction expansion

$$X(z) = [1-(1/2z)]/[1-(1/4z)]$$
 |z|>1/2 [7]

4)A causal system has differential equation given by

Y(n)=0.5y(n-1)-0.25y(n-2)+x(n)

What is ROC of transfer function of system.[7]

5)A DT system has transfer function

H(z)=[1+2/z]/[(1+0.5/z)(1+3/z)]

Give all possible ROC of this system. State in each case whether system is stable. [6]

UNIT TEST 2	2009-10
DSP	
TE ENTC	MARKS[25]
1)Comparison between radix 2 DIT-FFT and Radix 2 DIF-FFT.	[3]
2)Write note on	
i) Overlap save method	
ii) Overlap add method	[4]
3)The first five point of 8 pt DFT of real valued sequence are	
{0.25,0.125-j0.03018,0,0.125-j0.0518,0}.Determine three	e remaining 3 pts. [6]
4)Calculate DFT of sequence x(n)={1,1,0,0} and check validity of IDFT (use tabular factor method).	answer by calculating its [6]
5)Find linear convolution of x1(n) and x2(n) if	
X1(n)={1,2,3,4} x2(n)={1,1,1}	

Obtain same result using circular calculation.

[6]

UNIT TEST 3	2009-10
DSP	
TE-ENTC	
1)What are the advantages of windowing method in FIR?	[2]
2)Wrute a short note on Gibbs phenomenon ?	[2]
3)Why FIR filtera are called inherently stable?	[3]

4)Determine the filter coeffecients hd(n) for desired frequency response of low pass filter given by

 $\operatorname{Hd}(e^{j\omega}) = \{e^{-j\omega} - \pi/4 \le \omega \le \pi/4\}$ π/4 ≤ ω ≤ π } 0

If we define new filter coefficients by

h(n)=hd(n)w(n)

for $0 \le n \le 4$ w(n)={ 1

> 0 otherwise

Determine h(n).

[8]

5)Obtain linear phase realization of

$$H(z) = 1 + 1/4z + 1/4z^{2} + 1/z^{3}$$
[5]

6)Realize following system function in Direct form

$$H(z) = 1 + 3/4z + 17/8z^2 + 3/4z^3 + z^{-4}$$
[5]

	UNIT TEST 1		2010-11
	DSP		
	TE ENTC		
1a)List the advar	ntages and disadvantages of DSP over a	nalog signal processing.	[4]
b)Obtain Z trans	sform of the following duration sequence	ce	
x	(n)={1,2,4,5,0,7}		[4]
c)Obtain inverse	e Z transform using P.F.E method		
х	$X(Z) = [1-1/2z]/[1-1/4z^2]$	Z >1/2	[7]
	OR		
2a)Discuss abou	it causality and stability of discrete time	system.	[4]
b)Determine Z t	ransform of x(n)=(n+1)µ(n)		[4]
c)Obtain inverse	e Z transform using P.F.E method		
Х	$X(Z)=1/(1-1.5z^{-1}+0.5z^{-2})$		
-	ROC: Z >1		
	ROC: Z <0.5 ROC: 0.5< Z <1		[7]
	T of four point sequence		
	(n)={0,1,2,3}		[4]
	lar convolution using matrix method		
X(n)={1,2,3,1}	h(n)={4,3,2,2}		[4]
	nvolution using overlap add method		L 'J
C)FIND IMEAR COR	ivolution using overlap add method		

$$X(n)=\{1,2,-1,2,3,-2,-3,-1,1,1,2,-1\} \quad h(n)=\{1,2,3,\}$$
[7]

OR

4a)Determine length 4 saquence from its DFT

$$X(K) = \{4, 1-j, -2, 1+j\}$$
 [4]

b)Perform circular convolution using concentric circle method

$$X(n)=\{0,1,2,3\}$$
 h(n)= $\{2,1,1,2\}$ [4]

c)Find linear convolution using overlap save method

$$x(n)=\{1.2.-1.2.3.-2.-3.-1.1.1.2.-1\}$$

 $h(n)=\{1,2,3\}$ [7]

UNIT TEST 2	2010-11
DSP	
TE ENTC	

1)Show and compare computational complexity is reduced if 32 pt DFT is computed using Radix 2 DIT FFT algorithm. [3]

b)Find out H(z) using impulse invariance method at 5Hz sampling frequency from H(s)

c)A digital filter has frequency specifications as,

i)pass band frequency = ω_p =0.2 π

ii)stp band frequency= ω_z =0.3 π

What are the corresponding specifications for pass band and stop band frequency in analog domain if

i)Impulse invariance technique is used for designing.

ii)Bilinear transformation technique is used for designing. [6]

OR

2a)IIR LP filter is required to meet following specification

Pass band peak to peak ripple \leq 1dB,pass band edge 1.2KHz, stop band attenuation \geq 40dB,stop band edge 2.5KHz ,sample rate 8KHz

Filter is designed by performing BLT on analog system function of required order	
Butterworth filter so as to meet specification in implementation.	[10]
b)How stable analog filter is converted into stable digital filter and explain.	[5]
3)Given $x(n) = 2^n$ and N=8. Find $x(k)$ using DIT FFT algorithm	[8]

b)The transfer function of analog filter is

[7]

Find system transfer of digital filter using BLT.

OR

4a)Obtain DFT of sequence

X(n)={1/2,1/2,1/2,1/2,0,0,0,0} using DIF FFT algorithm. [8]

b) Design Chebyshev analog filter with maximum passband attenuation of 205 dB at Ω_p =20 rad/sec . Stop band attenuation of 30 dB at Ω_s =50 rad/sec.