Bharati Vidyapeeth's College of Engineering for Women, Pune-43 Department of Electronics and Telecommunication Engineering <u>Subject: Information Theory and Coding Techniques</u> Unit Test I -- T.E(E &TC) Div II (Acad-Year : 2010-2011 Sem II)

## **Duration: 1 hour**

Instructions:

- 1. Assume Suitable data, wherever necessary.
- 2. All Questions are Compulsory.
- 3. Bold numbers to the right indicate maximum marks.

\*\*\*\*\*

# <u>Q.1</u>

- **a)** Define Self-Information of the event  $X = x_i$ .
- **b)** Consider a source flipping a coin. How much information is contained in the message "the coin landed heads up"?
- c) Consider a fast-food restaurant in which a customer is nine times as likely to order a hamburger than a fish sandwich. How much information is contained in the message "the customer wants a hamburger"? How much information is contained in the message "the customer wants a fish sandwich"?
- **d)** Justify the statement "Lower probability implies higher degree of uncertainty and contains more information and vice versa"

# <u>Q.2</u>

**a)** A weather information source transmits visibility information with the probabilities given as below:

Visibility

Very poor

Poor Moderate

Good

| Evaluate the entropy of a course |     |
|----------------------------------|-----|
| Evaluate the entropy of a source |     |
| L'alaate the chilopy of a source | · • |

# <u>Q.3</u>

Consider a fast food restaurant in which a customer is nine times as likely to order a hamburger than a fish sandwich. How much information is contained in the message, "the customer wants a hamburger"? How much information is contained in the message, "the customer wants a fish sandwich"? (05)

#### 

# 1/8 1/8 1/2

Probability

1/4

(05)

(15)

Date: 12/03/2010 Max Marks: 25 Bharati Vidyapeeth's College of Engineering for Women, Pune-43 Department of Electronics and Telecommunication Engineering <u>Subject: Information Theory and Coding Techniques</u> Unit Test II -- T.E(E &TC) Div II (Acad-Year : 2010-2011 Sem II)

#### Date: 01/04/2010

Max Marks: 25

Duration: 1 hour Instructions:

- 1. Assume Suitable data, wherever necessary.
- 2. All Questions are Compulsory.
- 3. Bold numbers to the right indicate maximum marks.

\*\*\*\*\*\*\*

**Q.1)** Evaluate the efficiency, length and entropy of the source code containing the following symbols:

- $x_1$  is encoded as 1
- $x_2$  is encoded as 10
- x<sub>3</sub> is encoded as 100
- x<sub>4</sub> is encoded as 1000

Their probabilities of occurrence are given by:

 $P(x_1) = \frac{1}{4}, P(x_2) = \frac{1}{8}, P(x_3) = \frac{1}{8}, P(x_4) = \frac{1}{2}.$ 

*Q.2*) State Kraft Inequality Theorem.

Q.3) Define Hamming Weight and Hamming Distance of a Linear Block Code. (03)

Q.4) Consider the Convolutional Encoder shown below



- **b)** Sketch state diagram
- c) Sketch trellis diagram
- d) Find the free distance of this convolutional code

Input v1 v2 v2 v2 v2

(10)

(02)

(10)

## BHARATI VIDYAPEETH'S COLLEGE OF ENGINEERING FOR WOMEN, PUNE-43 Department of Electronics and Telecommunication Engineering UNIT TEST I – Information Theory and Coding Techniques

|            | Time: 1 Hour                                                                                                                                                                                                                  | Class: T.E. I                                                                                                                                                                                                                                                                                                                                                                                                                                     | Max. Marks: 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [A]<br>[B] | State and prove Sh<br>Shannon-Heartly The<br>Prove that the maxim                                                                                                                                                             | annon's Information capacity orem. Num channel capacity $C_{\infty}$ =1.44                                                                                                                                                                                                                                                                                                                                                                        | theorem. Compare it with<br>P/N <sub>0</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (8)<br>(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|            |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                   | d at 1 25 times the Normist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| [A]        | A analog signal navin<br>rate and each sample<br>that the successive sa<br>i) What is information<br>ii) Can the output of<br>channel with a bandw<br>iii) Find the S/N ratio<br>iv) Find the bandw<br>transmission of output | ig 4 MHZ band width is sample<br>e is quantized into 1 of 1024 ec<br>ample are statically independen<br>in rate of source<br>f this source be transmitted w<br>width of 10 KHZ and S/N ratio of<br>required for error free transmis<br>width required for an AWGI<br>at of this source if S/N ratio is 2                                                                                                                                          | a at 1.25 times the Nyquist<br>qually likely levels . Assume<br>t<br>ithout error over an AWGN<br>f 20 dB<br>ssion for part (ii)<br>N channel for error free<br>0 dB.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| [B]        | Write short Note on :<br>i) Entropy and its Pro<br>ii) Channel encoder<br>iii) BSC                                                                                                                                            | operties                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|            | [A]<br>[B]<br>[A]                                                                                                                                                                                                             | <ul> <li>[A] State and prove Sh Shannon-Heartly The</li> <li>[B] Prove that the maxim</li> <li>[A] A analog signal havin rate and each sample that the successive sa i) What is information ii) Can the output of channel with a bandwiii) Find the S/N ratio iv) Find the bandw transmission of output</li> <li>[B] Write short Note on : <ul> <li>i) Entropy and its Proi</li> <li>ii) Channel encoder</li> <li>iii) BSC</li> </ul> </li> </ul> | <ul> <li>Time: 1 Hour Class: T.E. I</li> <li>[A] State and prove Shannon's Information capacity Shannon-Heartly Theorem.</li> <li>[B] Prove that the maximum channel capacity C<sub>∞</sub>=1.44</li> <li>[A] A analog signal having 4 MHZ band width is sample rate and each sample is quantized into 1 of 1024 exthat the successive sample are statically independention i) What is information rate of source</li> <li>ii) Can the output of this source be transmitted with a bandwidth of 10 KHZ and S/N ratio of iii) Find the S/N ratio required for error free transmission of output of this source if S/N ratio is 2</li> <li>[B] Write short Note on : <ul> <li>i) Entropy and its Properties</li> <li>ii) Channel encoder</li> <li>iii) BSC</li> </ul> </li> </ul> | <ul> <li>Time: 1 Hour Class: T.E. I Max. Marks: 30</li> <li>[A] State and prove Shannon's Information capacity theorem. Compare it with Shannon-Heartly Theorem.</li> <li>[B] Prove that the maximum channel capacity C<sub>∞</sub>=1.44 P/N<sub>0</sub></li> <li>[A] A analog signal having 4 MHZ band width is sampled at 1.25 times the Nyquist rate and each sample is quantized into 1 of 1024 equally likely levels . Assume that the successive sample are statically independent <ol> <li>What is information rate of source</li> <li>Can the output of this source be transmitted without error over an AWGN channel with a bandwidth of 10 KHZ and S/N ratio of 20 dB</li> <li>Find the S/N ratio required for error free transmission for part (ii)</li> <li>V Find the bandwidth required for an AWGN channel for error free transmission of output of this source if S/N ratio is 20 dB.</li> </ol> </li> <li>[B] Write short Note on : <ol> <li>Entropy and its Properties</li> <li>Channel encoder</li> <li>BSC</li> </ol> </li> </ul> |

## BHARATI VIDYAPEETH'S COLLEGE OF ENGINEERING FOR WOMEN, PUNE-43 Department of Electronics and Telecommunication Engineering UNIT TEST I – Information Theory and Coding Techniques Time: 1 Hour Class: T.E. I Max. Marks: 30

| Q.1 | [A]<br>[B]                                                                                                                                                                   | Explain the sphere packing problem.<br>Explain Shannon Fano and Huffman Algorithm with suitable example. | (8)<br>(7) |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|------------|
| [A] | What is                                                                                                                                                                      | entropy? Show that the entropy is maximum , when all the messaging are nable Assume $m=3$                | (6)        |
| [B] | Equiprobable. Assume m=3.<br>Define the following with their significance and application in Digital Communication<br>System.<br>1) Noisefree channel<br>2) Kraft inequality |                                                                                                          |            |
| [C] | Write a s<br>1) Da<br>2) Sh                                                                                                                                                  | short note on :<br>ta Compaction<br>annon Source Coding Theorem                                          | (4)        |

Q.2

## BHARATI VIDYAPEETH'S COLLEGE OF ENGINEERING FOR WOMEN, PUNE-43 Department of Electronics and Telecommunication Engineering UNIT TEST I – Information Theory and Coding Techniques Time: 1 Hour 30 Min. Class: T.E. I Max. Marks: 50

| Q.1 | [a] | Suggest a suitable polynomial for a (7, 4) systematic cyclic code and find code<br>words for the following data words<br>i) 1010<br>ii) 1111<br>iii) 0001<br>iv) 1000 | (10) |
|-----|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|     | [b] | Explain FEC and ARQ in detail.                                                                                                                                        | (8)  |
|     |     |                                                                                                                                                                       |      |
| Q.2 | [a] | Design a Linear Block Code with a minimum distance of three of a message block of size of 8 bits.                                                                     | (10) |
|     | [Ь] | Write short notes on:<br>i) Fire Codes<br>ii) GOLAY Codes                                                                                                             | (8)  |
| Q.3 | [a] | What are Unger Bock's TCM design rules? Explain Asymptotic coding gain?                                                                                               | (7)  |
|     | [b] | Explain generator matrix and parity check matrix for (7,4) systematic code                                                                                            | (7)  |

#### BHARATI VIDYAPEETH'S COLLEGE OF ENGINEERING FOR WOMEN, PUNE-43 Department of Electronics and Telecommunication Engineering UNIT TEST I – Information Theory and Coding Techniques Time: 1 Hour 30 Min. Class: T.E. I Max. Marks: 50

|     | IIM | ie: 1 Hour 30 M                                                                                                                                                                                                                                                                 | In.                                                                                                | Class: I.E. I                                  |                                       | viax. Marks: 50 |      |
|-----|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|------------------------------------------------|---------------------------------------|-----------------|------|
| Q.1 | [a] | For the rate <sup>1</sup><br>function gener<br>i) Dec<br>Alg<br>ii) Find                                                                                                                                                                                                        | $\frac{1}{2}$ convolution encodutions $g_1 = 111, g_2 = 1$<br>sode the received solution<br>orithm | der with constraint<br>01.<br>equence 10101101 | length 3 and algo<br>010111 using Vit | ebraic<br>erbi  | (10) |
|     | [b] | Explain turbo<br>interleaver in                                                                                                                                                                                                                                                 | code with the help<br>the encoder.                                                                 | of encoder and de                              | coder .Explain the                    | role of         | (8)  |
| Q.2 | [a] | <ul> <li>[a] Construct a systematic (7,4) cyclic code using generator polynomial g(x) = X<sup>3</sup> + (X<sup>2</sup> + 1 for the message 1010</li> <li>[b] Explain with suitable example concept of "Burst error" and comment detection capabilities of CRC codes.</li> </ul> |                                                                                                    |                                                | (10)                                  |                 |      |
|     | [b] |                                                                                                                                                                                                                                                                                 |                                                                                                    |                                                | (8)                                   |                 |      |
| Q.3 | [a] | Draw and exp them.                                                                                                                                                                                                                                                              | ain block diagram o                                                                                | f FEC and ARQ . Al                             | so state four comp                    | arisons between | (7)  |
|     | [b] | Explain :<br>(i)Distance bo<br>(ii)Performanc<br>(iii) Code gain                                                                                                                                                                                                                | und<br>e bound                                                                                     |                                                |                                       |                 | (7)  |