Bharati Vidyapeeth's College Of Engineering for Women Pune-43 Department – E & TC

Class:TE-II

Subject-NSFD

Retest I

Date: 9/9/10	Max Marks:3	30
Instr	uction: All questions are compulsory	
Q-1) A) Test whether the polynomi	al is Hurwitz	7
i) $P(s)=s^3+2s^2+3s+6$		
ii) $F(s)=s^4+s^3+5s^2+3s+4$		
B) Test whether the given function	for positive realness	3
F(s)=		
C) Write a short note on causality a	and stability of network function.	7
Q-2) A) State the properties of LC	network and synthesize the following by Foste	er form 7
Y(s)=		
B) State the properties of network a	and synthesize the following function by Caue	er II form 5
Draw RL impedance and RC admit	ttance network	

F(s)=

Bharati Vidyapeeth's College Of Engineering for Women Pune-43 Department – E & TC TE- Unit Test I Subject-NSFD

Date: 27/08/10 Max Marks:	30
Instruction: All questions are compulsory	
Q-1) A) Define network function. State the properties of all types of network functions.	4
B) Explain the poles and zeros on the system function	4
C) Test whether the polynomial s^5+2s^3+s is Hurwitz	4
D) Determine whether the following functions are p.r.	3
F(s)=	
Q-2)A) State the properties of LC network and synthesize the following network by	6
Foster I Form	
Z(s)=	
B) State the properties of RL driving point impedance function and synthesize the	

Z(s)= By any one Cauer form

Bharati Vidyapeeth's College Of Engineering for Women Pune-43 Department – E & TC **TE- Unit Test II** Subject-NSFD

Date:28/09/10 Max Marks:30 Instruction: All questions are compulsory Q -1) A) Synthesize following given function 4 $Z_{21}=1/(s^3+3s^2+3s+2)$ B) Synthesize the following voltage ratio in lattice form 4 V2/V1 =C) Define zeros of transmission. Find zeros of transmission of given network 7 L3 1.0H L1 7000. 1.0H C3 ╢ 1.0uF R1 L5 1.0H **≥2.0**Ω C4 L4 .OuF C2 1.0H OuF 1.0uF 1.0H Q-2) A) Find the Butterworth approximation for a LPF for given Filter requirements 4 A_{max}=0.5db, A_{min}=12db, W_p=100rad/sec, W_s=400 rad/sec B) Find the Chebyshev approximation for LPF for given filter requirements 4 A_{max}=0.5db, A_{min}=20db, W_p=200rad/sec, W_s=600 rad/sec

C) Write short note on following approximation techniques:

I) Butterworth approximation

Ii) Chebyshev approximation

Table: Chebyshev approximation functions:

Amax=0.5db

Ν Numerator of H(s) 7

1	S+2.86278	2.86278
2	S ² +1.42562s+1.51620	1.43138
3	(s ² +0.62646s+1.14245)(s+0.62646)	0.71570
4	(s ² +0.35071s+1.06352)(s ² +0.8468s+0.356412)	0.35785
5	(s ² +0.22393s+1.03578)(s ² +0.48625s+0.47677)(s+0.362323)	0.17892

Bharati Vidyapeeth's College Of Engineering for Women Pune-43 **Department – E & TC TE- Unit Test I** Subject-NSFD

Date: 08/08/11

Max Marks:30

Instruction: All questions are compulsory

 $F(s)=(s+2)^2/(s^2+4)$ is a positive real function

Q-2) A) State the properties of RC impedance function. Synthesize the following impedance function using both the Cauer forms:

B) Obtain the Foster I and Foster II form of the following impedance function 7 Z(s)=

Bharati Vidyapeeth's College Of Engineering for Women Pune-43 Department – E & TC TE- Unit Test II Subject-NSFD

Date: 28/9/11

Max Marks:30

Instruction: All questions are compulsory

Q-1) A) Explain the significance of zeros of transmission and identify the zeros of transmission of the network below 8

B) $Y_{21}(s) =$

Synthesize and identify z _{ot}	4
C) Synthesize voltage ratio in terms of two constant resistance bridge-T circuit	4
$V_2/V_1 =$	
Q-2) A) State properties of TF. Derive TF of Butterworth Function for 3 rd order.	6

- B) Find the Butterworth approximation for LPF whose requirements are characterized by A_{max}=0.5db, A_{min}=12db, W_p=100rad/sec, W_s=400 rad/sec
- C) Convert a LPF shown with

 $R_1 = 500 \Omega w_c = 10^{6.}$

Q-3) a)Explain WITH ONE EXAMPLE co-efficient matching technique for obtaining element values

B) Synthesize following TF with prac component values $T(s)=20000/(s^2 + 100s + 10000)$

C) Design a second order Sallen - Key LPF with Butterworth approximation

Having Fc=1khz

DEPARTMENT : E&TC

YEAR 2010-11

UNIT TEST I

CLASS:T.E. (DIV-I) DATE: 27/8/2010 Max. Marks: 30

SUBJECT: NETWORK SYSNTHESIS AND FILTER DESIGN

Instructions: All questions are compulsory

1]	a)	Define network function. And state the properties of all types of network functions.	[4]
	b)	Explain the effect of poles and zeros on the system function	[4]
	c)	Test whether the polynomial $S^5 + 2S^3 + S$ is Hurwitz.	[4]
	d)	Determine whether the following functions is p.r.f. $F(S) = (2S^2+S+2) / (S^2+S+1)$	[3]
2]	a)	State the properties of LC dpZ and Synthesize the following network by Cauer I form. $Z(S) = (S^2 + 1)(S^2 + 8) / S(S^2 + 4)$	[8]
	b)	State the properties of RL dpZ and Synthesize the following network by Foster I form. $Y(S) = (S+1)(S+3)/(S+2)(S+4)$	[7])

DEPARTMENT : E&TC

YEAR 2011-12

UNIT TEST I

CLASS:T.E. (DIV-I)	DATE: 8 / 9 / 2011	Max. Marks: 30

SUBJECT: NETWORK SYSNTHESIS AND FILTER DESIGN

Instructions: All questions are compulsory

1]	a)	State the properties of all types of network functions.	[4]
	b)	State and Explain the conditions for Stability and Causality of a network function	[6]
	c)	Determine whether the following functions is p.r.f. $F(S) = (S^2+6S+5) / (S^2+9S+14)$	[6]
2]	a)	State the properties of LC dpZ function	[4]
	b)	Synthesize the following impedance function in FosterI and Cauer I form. $Z(S) = (S^2+1) / S(S^2+4)$	[10]

DEPARTMENT : E&TC

YEAR 2010-11

UNIT TEST II

CLASS:T.E. (DIV-I) DATE: 28/9/2010 Max. Marks: 30

SUBJECT: NETWORK SYSNTHESIS AND FILTER DESIGN

Instructions: All questions are compulsory

- 1] a) Synthesize $Z_{21} = 1/(S_3 + 3S_2 + 3S_2 + 2)$ using 1-ohm resistance. [4] b) Synthesize the given voltage ratio in Bridge T network form. V2/V1 = (S+2)/(S+3) [4]
 - c) Define Zeros of Transmissions. Find ZOT of given network. [7]

2] a) Find the Butterworth approximation for a LPF for given Filter [4] requirements.

Amax= 0.5 dB , Amin = 12 dB, Wp=100 , Ws=400

b) Find the Chebyshev approximation for a LPF for given Filter [4] requirements.

[7]

Amax= 0.5 dB, Amin = 20 dB, Wp=200, Ws=600

c) Write a short note on following

I) Butterworth approximation ii) Chebyshev approximation

DEPARTMENT : E&TC

YEAR 2011-12

UNIT TEST II

CLASS:T.E. (DIV-I) DATE: 26 / 9 /2011 Max. Marks: 50

SUBJECT: NETWORK SYSNTHESIS AND FILTER DESIGN

Instructions: All questions are compulsory

- 1] a) Explain the concept of Zeros of Transmissions in network [4] synthesis. Define minimum and maximum phase function.
 - b) Identify the ZOT of given network. [4]

- c) Realize the voltage ratio transfer function as a Lattice network [4] with both ends terminated in R $V2 / Vg = (\frac{1}{2}) * [(S-1) / (S+1)]$
- 2] a) Synthesize given voltage ratio transfer function as a constant [6] resistance bridge T network. with both ends terminated in R $V2/V1 = (S^2+1)/((S^2+2S+1))$
 - b) Synthesize the open circuit voltage ratio transfer function using [6] RC ladder network. with both ends terminated in R V2 / V1 = K/[(S+2)/((S+4))]

- 3] a) Compare Butterworth approximation characteristics with [4] Chebyshev approximation . Draw the frequency response for both . Define cut-off frequency.
 - b) Find the loss at Ws=40 rad/sec for a fifth -order (n=5) Butterworth [4] filter that has a maximum loss of 1 dB at the passband edge frequency wp=10 rad/sec.

c) Derive an expression for the n (order of filter) of Butterworth [6] approximation.

4] a) Find the approximation function for the second-order normalized [6] Butterworth Low pass filter.

b) Find the Chebyshev approximation for a LPF for given Filter [6] requirements.

Amax= 0.5 dB, Amin = 12 dB, Wp=100, Ws=400