BHARATI VIDYAPEETH INSTITUTE OF TECHNOLOGY

QUESTION BANK

Unit Test-I

Program: - Computer Engineering Group Program Code: **IF**

Course Title: Digital Techniques and Microprocessor Semester: - III

Course Abbr. & Code: -DTM (313337) Scheme: K

CHAPTER 1 Number System and Digital Logic Gates 12 Marks (CO1)

2 Marks

- 1. List the applications of digital system. (CO1)
- 2. Convert the following: a) $(420)_{10} = (?)_2(CO1)$

b)
$$(10110)_2 = (?)_{10}$$

- 3. Convert
 - a) 1110 gray to binary (CO1)
 - b) 1011 binary to gray
- 4. Perform the binary arithmetic. (C01)
 - a) $(11011.11)_2 + (11011.01)_2 = (?)_2$
 - b) $(11101.1101)_2 (101.011)_2 = (?)_2$
- 5. Covert the following: (C01)
 - 1) $(498.25)_{16} = (?)_{10}$
 - 2) $(101100101)_2 = (?)_{16}$
 - 3) (B689D) 16 = (?)8
 - 4) $(110110111)_2 = (?)_{10}$
- 6. Find 2's complement of (10010010) 2

4 Marks

- 7. State any 6 Boolean laws. (CO1)
- 8. State and prove De Morgan's theorems. (CO1)
- 9. Draw symbol, truth table and logic equations of Ex-OR and EX-NOR gate (CO1)
- 10. Perform BCD addition: (CO1)
 - a) (445)10 + (149)10
 - b) (399)10 + (598)10

11. Simplify the following and realize it using basic gates. (CO1)

$$b)Y=AB+AB+AB$$

- 12.Implement AND, OR, NOT, NOR gates by using NAND gate only. (CO1)
- 13.Implement AND, OR, NOT, NAND gates by using NOR gate only. (CO1)
- 14.Implement following Boolean expression using NAND gates only. (CO1)

$$Y=(A + \overline{B}C) (C + AB)$$

15.Implement following Boolean expression using NOR gates only. (CO1)

CHAPTER-2 Combinational and Sequential Logic Circuits (CO2) 16 Marks

2 Marks

- 16. Differentiate between combinational circuit and sequential circuit. (CO2)
- 17. Write concept of Flip Flop (CO2)
- 18. Write concept of Counter. (CO2)
- 19.Explain the term Clock Signal. (CO2)
- 20. Convert following expressions into canonical SOP form (CO2)

a)
$$\overline{A} + B \overline{C} \overline{D}$$

21. Convert following expression into canonical POS form (CO2)

a)
$$(A + \overline{B}) (A + C) (B + \overline{C})$$

- 22.Design half adder using k-map and basic gates. (CO2)
- 23.Design half subtractor using k-map and basic gates. (CO2)

Marks 4

24. Simplify the following using k-map and realize using NAND gates:(CO2)

a) f (A, B, C, D) =
$$\sum m (0.2, 5.13, 15)$$

b) f (A, B, C, D) =
$$\sum$$
 m (1,5,7,9,11,13,15)

25. Simplify the following equation using k-map and realize it using logic gates: (CO2)

a)
$$Y = \sum m(0, 1, 2, 3, 8, 10) + \sum d(5, 7)$$

b)
$$Y = \sum m(0, 1, 4, 5) + \sum d(6, 7, 14, 15)$$

26.Solve POS expression using k-map:(CO2)

a) f (A, B, C) =
$$\pi$$
M (2, 3, 4, 5, 6, 7)
b) f (A, B, C, D) = π M (1, 3, 5, 7, 8, 10, 14)

- 27.Draw block diagram, truth table, logical expressions of logic diagram of 4:1 multiplexer. .(CO2)
- 28. Obtain an 8:1 Mux using 4:1 multiplexer. .(CO2)
- 29.Draw block diagram of 1:4 De-multiplexer and write down truth table. .(CO2)

CHAPTER-3 16-Bit Microprocessor 8086 (CO3) 12 Marks

2 Marks

30.List any four features of 8086 Microprocessor. (CO3)

31.State the functions of following pins of 8086. (CO3)

a) READY b) HOLD

4 Marks

- 32.Draw 8086 Architecture Block Diagram. (CO3)
- 33.Draw and explain functional block diagram of 8086. (CO3)
- 34.Draw Flag register of 8086 and explain it.
- 35. Write the function of Execution Unit.