

Bharati Vidyapeeth Institute of Technology Navi Mumbai

A Workbook for BASIC MATHEMATICS (BMS) (22103)

Semester- 1(I) (20 - 20)
Diploma in All Courses

Name of Student	: -
Program & Year	:
Roll No	······

COURSE OUTCOMES (CO)

The theory, practical experiences and relevant soft skills associated with this course are to be taught and implemented, so that the student demonstrates the following industry oriented COs associated with the above mentioned competency:

- CO1. Apply the concepts of algebra to solve engineering related problems.
- CO2. Utilize basic concepts of trigonometry to solve elementary engineering problems.
- CO3. Solve basic engineering problems under given conditions of straight lines.
- CO4. Solve the problems based on measurement of regular closed figures and regular solids.
- CO5. Use basic concepts of statistics to solve engineering related problems.

List of Tutorials

Academic Year:	Name of Faculty:
----------------	------------------

Course code: Subject Code: BMS (22103)

Name of candidate: Enroll no.

Roll no. Semester: 1 (I)

Sr. No.	Title	Date of performance	Date of submission	Sign of Teacher
1	ALGEBRA: LOGARITHMS.			
2	ALGEBRA : DETERMINANTS			
3	ALGEBRA : MATRICES			
4	ALGEBRA : PARTIAL FRACTIONS			
5	TRIGONOMETRY: ALLIED, COMPOUND & MULTIPLE ANGLES			
6	TRIGONOMETRY: MULTIPLE, SUBMULTIPLE ANGLES, FACORIZATION & DEFACORIZATION PROBLEMS			
7	TRIGONOMETRY: INVERSE TRIGONOMETRIC FUNCTION			
8	CO-ORDINATE GEOMETRY: STRAIGHT LINE			
9	MENSURATION: AREA, SUFACE AREA & VOLUME			
10	STATISTICS: MD, SD & VARIACNCE			

(Logarithm)

Q 1 Write all Properties of Logarithm

Q 2 Evaluate: (25)^{-log₅ 3}

Q3 Prove that $\frac{1}{\log_{pq} pqr} + \frac{1}{\log_{qr} pqr} + \frac{1}{\log_{pr} pqr} = 2$

Q4 Solve
$$\log_5(2x+4) = 2$$

Q5 Solve
$$\log_3 x + \frac{3}{\log_3 x} = 4$$

Q 6 Prove That
$$2 \log \frac{5}{3} - \log \frac{25}{16} + 2 \log \frac{3}{4} = 0$$

Q7 Prove that
$$\frac{\log a^3}{\log abc} + \frac{\log b^3}{\log abc} + \frac{\log c^3}{\log abc} = 3$$

Q8 If
$$a^2 + b^2 = 7ab$$
 then show that $\log\left(\frac{a+b}{3}\right) = \frac{1}{2}(\log a + \log b)$

(Determinant)

Q 1. Solve the following:

a)
$$\begin{vmatrix} 3 & -5 \\ 4 & 7 \end{vmatrix} =$$

b)
$$\begin{vmatrix} 1 & -2 & 3 \\ -2 & 5 & 6 \\ 4 & 0 & -4 \end{vmatrix} =$$

Q 2. Solve for x:

a)
$$\begin{vmatrix} x & 6 \\ 2 & -3 \end{vmatrix} = 4$$

b)
$$\begin{vmatrix} 5 & x & 4 \\ -1 & 0 & 6 \\ -4 & 3 & 2 \end{vmatrix} = 0$$

Q 3. Solve the following simultaneous equations by using Cramer's rule.

a)
$$3x + 5y - 2z = 6$$
; $2x - 3y + 4z = 3$; $x + 2y + 4z = 7$

Q 4.
$$x + 2y - z = 2$$
; $3x - y + 2z = 7$; $2x + 2y + z = 9$

Q5. Find the area of the triangle formed by the points (2,-1),(-3,4) and (5,2)

Q 6. Find the area of the Quadrilateral formed by the points (1,1),(5,2),(4,4) and (2,3).

(Matrices)

Q1 If
$$A = \begin{bmatrix} 1 & -2 & 3 \\ -1 & 2 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} 2 & 3 \\ 3 & 1 \\ 1 & 2 \end{bmatrix}$, find the matrix $AB - 3I$, where I is unit matrix.

Q 2 If
$$A = \begin{bmatrix} 2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \end{bmatrix}$$
 Show that $A^2 = A$.

Q3 If
$$A = \begin{bmatrix} 2 & -2 \\ 3 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} -1 & 5 \\ 4 & -3 \end{bmatrix}$, $C = \begin{bmatrix} 7 & -5 \\ 0 & 5 \end{bmatrix}$ Verify that (AB) $C = A (BC)$.

Q 4 Find x,y,z if
$$\begin{bmatrix} 1 & 3 & 2 \\ 2 & 0 & 1 \\ 3 & 1 & 2 \end{bmatrix} + 2 \begin{bmatrix} 3 & 0 & 2 \\ 1 & 4 & 5 \\ 2 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

Q 5 Show that the matrix
$$\mathbf{A} = \begin{bmatrix} \cos\theta & 0 & \sin\theta \\ 0 & 1 & 0 \\ -\sin\theta & 0 & \cos\theta \end{bmatrix}$$
 is an orthogonal matrix.

Q6 If
$$A = \begin{bmatrix} 1 & 2 & -1 \\ 3 & 0 & 2 \\ 4 & 5 & 0 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 1 & 3 \end{bmatrix}$ verify that $(AB)^T = B^T A^T$

Q7 Find inverse of the matrix $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{bmatrix}$

Q8 Using matrix inversion method, solve the equations:

$$x + 3y + 3z = 12$$
, $x + 4y + 4z = 15$, $x + 3y + 4z = 13$

Q9 Using matrix inversion method, solve the equations:

$$x + y + z = 6$$
, $3x - y + 3z = 10$, $5x + 5y - 4z = 3$

(Partial Fraction)

Q 1 Resolve into Partial Fractions: $\frac{3x-1}{(x-4)(2x+1)(x-1)}$

Q 2 Resolve into Partial Fractions: $\frac{x^2+1}{x(x^2-1)}$

Q3 Resolve into Partial Fractions: $\frac{1}{(x+1)^2(x+2)}$

Q 4 Resolve into Partial Fractions: $\frac{x}{x^3-1}$

Q 5 Resolve into Partial Fractions: $\frac{\sin \theta + 1}{(\sin \theta + 2)(\sin \theta + 3)}$

Q 6 Resolve into Partial Fractions: $\frac{e^x}{e^{2x}+4e^x+3}$

Q7 Resolve into Partial Fractions: $\frac{x^3+2}{x^2-1}$

(Trigonometric Functions of Allied and Compound Angles)

Q1 Prove that: $sin(A + B) sin(A - B) = cos^2 B - cos^2 A$.

Q2 If
$$\tan(x+y) = \frac{3}{4}$$
 and $\tan(x-y) = \frac{8}{15}$, show that $\tan 2x = \frac{77}{36}$.

Q3 Prove that:
$$\cos(510^{\circ}) \cdot \cos(330^{\circ}) + \sin(390^{\circ}) \cos(120^{\circ}) = -1$$

Q4 Prove that
$$tan(A + B) = \frac{tan A + tan B}{1 - tan A tan B}$$

Q 5 Prove that
$$\frac{1-\tan 2\theta \tan \theta}{1+\tan 2\theta \tan \theta} = \frac{\cos 3\theta}{\cos \theta}$$

Q6 Prove that: $\frac{\cos 3\theta}{\cos \theta} + \frac{\sin 3\theta}{\sin \theta} = 4\cos 2\theta$

Q8 In $\triangle ABC$ prove that $\tan A + \tan B + \tan C = \tan A \tan B \tan C$

Q9 Prove that $1 + \tan A \tan 2A = \sec 2A$

- Q 10 Define:
 - 1) Compound angle

2) Allied Angle

(Trigonometric Functions of Multiple & Sub-Multiple Angle, Factorization & De-Factorization Formula)

Q1 Prove that: $\cos 2\theta = 1 - 2\sin^2 \theta$

Q2 If $\cos A = 0.4$, find the value of $\cos 3A$.

Q3 Prove that: $\frac{\sin 4\theta + \sin 2\theta}{1 + \cos 2\theta + \cos 4\theta} = \tan 2\theta$.

Q4 Prove that: $\sin 3A = 3 \sin A - 4 \sin^3 A$.

Q5 Prove that:
$$\sqrt{2 + \sqrt{2 + 2\cos 4\theta}} = 2\cos \theta$$

Q6 If $2 \sin 40^{\circ} \cdot \cos 10^{\circ} = \sin A + \sin B$, find A and B.

Q7 Prove that: $\frac{\sin 7x + \sin x}{\cos 5x - \cos 3x} = \sin 2x - \cos 2x \cdot \cot x$

Q8 Prove that: $\cos 10^{\circ} \cdot \cos 50^{\circ} \cdot \cos 70^{\circ} = \frac{\sqrt{3}}{8}$

Q9 Prove that:
$$\frac{\sin A + \sin 2A + \sin 3A + \sin 4A}{\cos A + \cos 2A + \cos 3A + \cos 4A} = \tan\left(\frac{5A}{2}\right).$$

Q 10 Prove that:
$$\frac{\sin 19^{0} + \cos 11^{0}}{\cos 19^{0} - \sin 11^{0}} = \sqrt{3}$$

(Inverse Trigonometric Functions)

Q1 Prove that: $2\sin^{-1} x = \sin^{-1}(2x\sqrt{1-x^2})$.

Q2 Find the principle value of: 1) $\cos^{-1}\left(-\frac{1}{2}\right)$ 2) $\sin^{-1}\left(\frac{1}{\sqrt{2}}\right)$ 3) $\tan\left[2\tan^{-1}\left(\frac{1}{5}\right)\right]$

Q3 Find the value of $\cos \left[\sin^{-1} \left(\frac{3}{5} \right) + \sin^{-1} \left(\frac{5}{13} \right) \right]$

Q4 Prove that
$$: \tan^{-1}\left(\frac{1}{2}\right) + \tan^{-1}\left(\frac{1}{3}\right) = \frac{\pi}{4}$$

Q5 Prove that
$$: \cos^{-1}\left(\frac{4}{5}\right) + \cos^{-1}\left(\frac{12}{13}\right) = \cos^{-1}\left(\frac{33}{65}\right)$$

Q6 Prove that
$$: \tan^{-1}(1) + \tan^{-1}(2) + \tan^{-1}(3) = \pi$$

(Straight Line)

Q1 State the conditions of parallel and perpendicular lines, whose slopes are m_1 and m_2 .

Q2 Find intercepts of a line 2x + 3y = 6 on co - ordinate axis.

Q3 Find the equation of a straignt line that passes through (3,4) and perpendicular to the line 3x + 2y + 5 = 0.

Q4 Find the equation of a straignt linewhich passes through the point of intersection of the lines 2x + 3y = 13,5x - y = 7 and perpendicular to the line 2x - 5y + 9 = 0.

Q5 Find the length of perpendicular from the point (3,2) on the line 4x - 6y - 5 = 0.

Q6 Find the equation of straight line passing through the points (-4,6) and (8,-3).

Q7 Find the equation of the straight line passing through (-3,10) and sum of their intercepts is 8.

Q8 Find the acute angle between the lines 2x + 3y = 13 and 2x - 5y + 7 = 0

Q 9 Prove that if θ is the acute angle between the lines with slopes

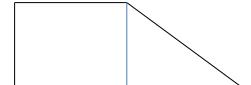
 m_{1} and m_{2} then $\tan\theta=\left|\frac{m_{1}-m_{2}}{1+m_{1}\,m_{2}}\right|$

Q 10 Find the perpendicular distance between the parallel lines

5x - 12y + 1 = 0 and 10x - 24y = 1.

Assignment 9

(Mensuration)


Q 1	How many tiles, e	ach measuring	2m l	by 0.7m, a	are required	to cor	ver	a
-----	-------------------	---------------	------	------------	--------------	--------	-----	---

 $rectangular\ hall\ 12m\ long\ and\ 8m\ broad?\ Find\ the\ cost\ of\ tiles\ at\ 25\ Rs.\ per\ tile.$

Q2

A retaining wall carries its two horizontal parallel sides 3m and 6.7m which are 2.25m apart.

Calculate the area of the wall.

Q3	Find the Capacity of a Cylindrical Water Tank whose diameter is 4m and height is 5.2

Find the area of a circle whose radius is equal to the side square with area

Q 4

 $196 cm^{2}$

Q 5	Find the total sur	face area of a cube	if its volume is 216 cm³
-----	--------------------	---------------------	--------------------------

Q 6 The diameter of a wheel is 280 cm. It roles through a distance of 44m. Find the Number of Revolutions made by the wheel.

Q 7	Find the surface area of solid cylinder with radius 7 cm and height $28\mathrm{cm}$.

Q8 How much canves cloth will be required for stitching a conical tent of base radius 3 m and height $4 \, \text{m}$.

Q9. The length & bredth of a rectangle are in the ratio 3:2 If the area of the rectangle is 726 t	m2
Find its Perimeter.	
Q 10 Find the amount of concrete required to errect a concrete piller	
whose circular base perimeter is 8.8 m and area of curve surface is 17.6 m^2	

Q 11 Find the volume of a right circular cone with diameter 6 cm and slant height 5 cm.

Assignment 10

(Statistics)

Q1 Find the range and coefficient of range of the following:

 $a)\ 3,6,10,1,15,16,21,19,18.$

b)

Age (in Years)	10-19	20-29	30-39	40-49	50-59	60-69	70-79
Frequency	3	61	223	137	53	19	4

Q 2 Find mean deviation from mean for the following data:

Marks	3	4	5	6	7	8
No. of Students	4	9	10	8	6	3

Q3 Find mean deviation from mean for the following data:

Weight (in gms)	10-15	15-20	20-25	25-30	30-35	35-40	40-45
No. of items	7	12	16	25	19	15	6

Q4 Find standard deviation for the following data:

Class interval	0-10	10-20	20-30	30-40	40-50
Frequency	14	23	27	21	15

Q5 Find standard deviation and coefficient of variance for the following data:

Expenditure Below	5	10	15	20	25
No. of Students	6	16	28	38	46

Q6 In two factories A and B, engaged in the same area of the industry, the average weekly wages (in Rs.) and the S.D. are as below

Factory	Average Wages	S. D.
А	34.5	5.0
В	28.5	4.5

Which factory A or B has greater variability in individual wages?